Наиболее распространенные дефекты и повреждения элементов кирпичной кладки

0 66

В процессе эксплуатации зданий вследствие различных причин происходят физический износ строительных конструкций, снижение и потеря их несущей способности, а также деформации как отдельных элементов, так и здания в целом. Для того чтобы разработать эффективные мероприятия по восстановлению эксплуатационных качеств конструкций, необходимо провести их обследование с целью выявить причины преждевременного износа и понижения несущей способности таких элементов здания или сооружения.

В своем докладе на 2‑й практической конференции «Реконструкция и реставрация зданий и сооружений» начальник отдела обследования строительных конструкций РУП «Стройтехнорм» Владимир Михайлович Телегин сообщил, что некоторые наиболее распространенные причины возникновения дефектов и повреждений в элементах кирпичной кладки подробно рассматриваются в книге В. В. Габрусенко «Аварии, дефекты и усиление железобетонных и каменных конструкций». По мнению В. М. Телегина, некоторые утверждения автора книги спорны, однако докладчик изложил ее основные тезисы в собственной интерпретации, с учетом накопленного практического опыта.

Причины образования трещин в местах сопряжения простенков с подоконными частями кладки

Образование подобных трещин некоторые специалисты объясняют температурными напряжениями. Однако чаще всего главной причиной их появления является депланация (искривление) сечений кладки, вызванная неравномерными напряжениями.

В простенках, особенно на первых этажах, нормальные (вертикальные) напряжения σ намного выше, чем в подоконной части кладки, так как простенки несут нагрузку от всех вышележащих этажей, а подоконные части – только от собственного веса и веса одного окна. В местах резкого скачка нормальных напряжений возникают горизонтальные напряжения σt, которые приводят к разрыву кладки и образованию вертикальных, иногда наклонных, трещин.

Причины образования трещин в местах сопряжения продольных и поперечных стен

Как правило, появление таких трещин обусловлено действием двух факторов. Первый – это вышеуказанная депланация горизонтальных сечений каменной кладки, когда одна стена, например продольная, является несущей, а перпендикулярная ей – самонесущей. В несущей стене нормальные напряжения намного выше, чем в самонесущей, и, соответственно, велика разность вертикальных деформаций стен (деформаций укорочения). Однако в работе стен имеется одна особенность, которую расчетные формулы не учитывают, а именно: разность нормальных напряжений достигает максимума на нижнем этаже, а разность абсолютных (суммарных) деформаций – на верхнем. Именно в верхней части начинают образовываться трещины, длина которых с годами увеличивается, – иногда они пересекают несколько этажей. Однако ограничить длину и ширину раскрытия трещин можно с помощью армирования горизонтальных рядов кладки, в первую очередь – в уровне перекрытий самых верхних этажей.

Второй фактор – «зависание» несущих стен на самонесущих. Такое явление происходит в том случае, если проектировщик неточно определил размеры фундаментов под самонесущие стены и назначил ширину подошвы ленточного фундамента «на глазок», с запасом (такую же или чуть меньшую, чем у несущих стен). В результате основание под самонесущей стеной испытывает значительно меньшее давление р и, следовательно, деформируется (оседает) меньше, чем под несущей. Поскольку обе стены перевязаны, самонесущая стена препятствует свободной осадке несущей. В результате происходит «зависание» несущих стен, и появляются вызванные им трещины, которые образуются преимущественно в нижней части зданий. В данном случае чрезмерный запас приносит вред конструкции. Подобное явление может происходить при наличии не только ленточных, но и свайных фундаментов с ленточными ростверками, если не учтены разные нагрузки от стен.

«Если следовать формально требованиям ТНПА, в частности СНиП 2.01.07–85 «Нагрузки и воздействия» при сборе нагрузок, в том числе на фундаменты, нормативное значение равномерно распределенной нагрузки, в соответствии с таблицей 3, составляет: для квартир – 150 кгс/м2, на лестницы с примыкающими к ним проходами – 300 кгс/м2. В действительности вероятность полной загрузки лестницы мала. Большое значение имеет история загружения (возведения) стен, например, в случае, когда из-за распора «арочного» эффекта происходит зависание кладки между ранее возведенными участками, причем со смещением» деформационного шва. Так, в Жлобине в здании «Приорбанка» произошло зависание перегородок и стен на колоннах», – отметил В. М. Телегин.

Причины обрушения стропильных конструкций, опирающихся на пилястры стен

Как показывает опыт обследования, может быть несколько причин такого явления. Первая – недостаточная глубина (площадь) опирания. Вторая – морозное разрушение верхней части кладки стен при систематическом замачивании водой. Третья – депланация сечений, которую следует рассмотреть подробнее.

В нормативно-справочной литературе рекомендуется распределительные плиты (подушки) под опорами стропильных конструкций (балок, ферм) и подкрановых балок заводить в основную стену не менее чем на 120 мм, а кладку под подушками на высоту 1 м армировать сетками. Однако при таком решении опорное давление не распределяется на участки стены, примыкающие к пилястре с боков. На этих участках напряжения близки нулю, в то время как напряжения в кладке пилястр под подушками имеют максимальное значение. В результате горизонтальное сечение кладки искривляется (происходит депланация), и по границе пилястры со стеной образуются вертикальные трещины, которые начинаются вверху. Они отделяют пилястру от стены и превращают ее на значительном протяжении в отдельно стоящий столб. Такой столб испытывает более высокие, чем по расчету, напряжения и обладает значительно большей гибкостью. Поэтому целесообразно предусматривать в проектах такое армирование верхней части пилястр, которое захватывало бы и примыкающие с боков участки стен, а при больших значениях опорных давлений использовать наряду с подушками и железобетонные пояса.

К чему приводит недостаточная глубина опирания элементов перекрытий (покрытий) на каменные стены, пилястры и столбы

Чем меньше глубина (площадь) опирания конструкций, тем выше напряжения смятия в каменной кладке. Если глубина опирания недостаточна, напряжения превышают прочность кладки на смятие и в ней образуются опасные трещины, которые вызывают скол кладки и обрушение опирающихся конструкций (фермы, балки, плиты, перемычки). К сожалению, указанный опасный дефект является распространенным, и нередки случаи, когда он приводит к гибели людей.

К чему приводит отсутствие распределительных железобетонных плит под опорами ригелей (ферм, балок)

Распределительные плиты (подушки) выравнивают давление под опорами конструкций, уменьшая максимальные значения напряжений смятия в кладке. Причем, чем больше толщина подушки, тем более равномерны напряжения. На эти уменьшенные значения напряжений и рассчитывают прочность кладки. Если предусмотренная проектом подушка не установлена, напряжения смятия возрастут, что может привести к аварийным последствиям. Подушки необходимо ставить в том случае, когда опорная реакция превышает 100 кН (10 т), даже если они не требуются по расчету. Толщина подушек назначается не менее 150 мм, а их объемное армирование – не менее 0,5%. Следует, однако, помнить о том, что сами подушки непосредственно воспринимают опорное давление, поэтому их также нужно рассчитывать на смятие с подбором требуемой арматуры и класса бетона.

Роль арматурной сетки в кладке под опорами балок, прогонов и перемычек

В случае если железобетонные подушки уменьшают напряжения смятия в кладке, сетки увеличивают ее расчетное сопротивление смятию. При смятии разрушение кладки начинается с образования небольших трещин непосредственно под опорами. Сетки предотвращают развитие этих трещин и таким образом препятствуют разрушению кладки. Следовательно, устанавливать сетки следует в самых верхних швах, иначе они не принесут пользы. Отсутствие сеток в том случае, когда они необходимы по расчету, может вызвать аварийное состояние кладки, и потребуется ее усиление.

Появление температурных трещин в стенах

Как правило, трещины появляются в том случае, когда существует препятствие для свободных деформаций укорочения при падении температуры воздуха. Таким препятствием обычно являются подземные конструкции (фундаменты и стены подвала), сезонный перепад температуры которых намного меньше, чем перепад температуры надземных стен. В таком случае в надземных стенах возникают большие растягивающие напряжения, которые и приводят к образованию трещин в ослабленных сечениях: в местах расположения проемов, слабой перевязки швов, плохого заполнения вертикальных швов и т. п. Причем напряжения больше на участках, расположенных на небольшом расстоянии от подземных конструкций, поэтому трещины начинаются, как правило, с нижних этажей.

В отапливаемых зданиях температурные трещины, как правило, являются поверхностными и не представляют опасности для несущей способности стен. Если же они становятся сквозными, то причину нужно искать не в температурных деформациях, а в депланации сечений. Часто температурные трещины образуются в «долгостроях» – в домах, простоявших одну или несколько зим без отопления.

Более опасные трещины, с шириной раскрытия до нескольких сантиметров, образуются в протяженных зданиях при отсутствии в них деформационных швов. Трещины рассекают продольные стены по наиболее слабым сечениям – в местах расположения внутренних проездов и оконных проемов. Они ослабляют кладку под опорами балок, плит и перемычек и способны привести к обрушению данных конструкций. «Лечение» подобных трещин обычными методами – зачеканкой или инъецированием – практически бесполезно (трещины «дышат» при изменении температуры наружного воздуха), а меры по защите помещений от проникающего холода требуют больших затрат, так же как и меры по усилению стен. Подобный брак – редкость, однако в практике строительства все же встречается.

По мнению В. М. Телегина, нормативная литература не содержит ответов на вопросы, касающиеся влажностных деформаций каменной кладки. В пособии к СНиПу (приложение 11 «Расчет конструкций каменных зданий на температурно-влажностные воздействия и усадку»), влияние влажности не рассматривается. В результате обследования каменных конструкций выяснилось, что влажностные деформации оказывают значительное влияние на прочность конструкций, их целостность и пр. Например, проводилась разборка каменной кладки – сухой и увлажненной. При этом наблюдалось развитие трещин в периодически увлажняемых каменных конструкциях, образование трещин в замках арок, сводов.

Что произойдет, если перекрытия не связать со стенами анкерами

Среди специалистов распространено мнение, что анкеровка нужна для того, чтобы предотвратить выдергивание перекрытий из стен при воздействии случайных неблагоприятных факторов. Однако в данном случае причину путают со следствием.

Расчетная схема несущей каменной стены многоэтажного здания представляет собой многопролетную вертикально ориентированную балку. Опорами балки служат перекрытия, однако при условии, что стена связана с ними анкерами, поэтому правильной фомулировкой является не «анкеровка перекрытий в стенах», а «анкеровка стен в перекрытиях» (в СНиП II‑22–81 «Каменные и армокаменные конструкции» раздел имеет именно такое название).

То, что анкера не установлены хотя бы в одном перекрытии, означает, что пропущена одна опора и пролет балки и ее гибкость возросли вдвое. В результате стена окажется перегруженной, что приведет к аварийным последствиям. Поэтому анкеровке стен в уровне перекрытий необходимо уделять особое внимание, учитывая то, что исправление подобного дефекта – мероприятие исключительно дорогостоящее как по расходу металла, так и по затратам труда. Следует также помнить о том, что если со стеной анкером связан один конец плиты или балки, то с противоположной стеной должен быть связан и другой конец. Кроме того, анкера должны располагаться строго перпендикулярно оси стены и не иметь начальных искривлений, в противном случае они не смогут выполнить свою функцию.

Например, в Москве произошло обрушение стен 2‑этажного здания в «Даниловской мануфактуре». По причине перегрузки конструкций постоянная нагрузка на перекрытия составляла 740 кгс/м2, 400 кгс/м2 (нормативные значения), и в результате произошло образование трещин в простенках 1‑го этажа. Температурно-влажностные деформации здания, которое не эксплуатировалось более двух лет, привели к выпучиванию простенков и расслоению их кладки на отдельные элементы. В целях усиления балки перекрытий подперли стальными трубами и таким образом нарушили анкеровку простенков к балкам, то есть «довершили» начатое, – в результате произошло обрушение.

К чему может привести устройство новых проемов в существующих стенах подвала

Новые проемы уменьшают длину существующих стен, а вместе с ней – длину передачи нагрузки от здания на фундамент, и приводят к увеличению давления на грунт основания. Однако увеличенное давление передается неравномерно, его максимальные значения находятся у краев проемов, и на данном участке грунт будет деформироваться (проседать) больше, чем в других местах. Следует учитывать, что чем больше ширина проемов, тем больше величина деформаций основания и тем больше их неравномерность. В случае если фундаменты выполнены не монолитными, а из сборных железобетонных подушек, образуются трещины в стенах, перекосы конструкций перекрытий и прочие дефекты.

Сегодня при перепланировке подвалов существующих зданий для нужд заказика проектировщики обычно ограничивают свою работу дежурными мерами – подведением перемычек и усилением ослабленных простенков, хотя часто требуется также усиление фундаментов или грунтов оснований. Следует помнить, что, только установив истинные причины появления повреждений и дефектов в каменных конструкциях, можно эффективно предотвратить или устранить данные явления.

По материалам доклада В. М. Телегина

 

Leave A Reply

Your email address will not be published.